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Figure 1:  A staggered space-time mesh with the spatial boundaries at j = ± jb ( jb = 2).

Dt
2

Dx
2

Dx
2

j = – jb

j = –3/2

j = – 1

j = –1/2

j = 0

j = 1/2

j = 1

j = 3/2

j = jb

x0x –1/2 x1/2x –1 x1x –3/2 x3/2x –jb
xjb

t

x

Figure 2:  The computation domain and the shock 
locations of a steady-state oblique shock problem.
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Figure 3:  The spatial locations and the mesh indices (r, s) of mesh points used in
a steady-state oblique shock problem (R = S = 4).
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Figure 4:  The spatial locations and the mesh indices (r, s) of mesh points used in a problem
with both horizontal and vertical walls. (a) Mesh 1. (b) Mesh 2.
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Figure 5:  The CE/SE solution and the exact solution of the Sjögreen problem.
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Figure 6:  The CE/SE solution of the Shu-Osher problem.
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Figure 7:  The CE/SE solution and the exact solution of the shock-wave merging 
problem (t = 0.675,     = 2).α
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Figure 8:  The CE/SE solution and the exact solution of the shock-wave merging 
problem (t = 1.1205,     = 2).α
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Figure 9:  The CE/SE solution and the exact solution of the shock-wave merging 
problem (t = 1.62,     = 2).α
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Figure 10:  The CE/SE solution and the exact solution of the shock-wave merging 
problem (t = 1.62,     = 3).α
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Figure 11:  The CE/SE solution of the Woodward-Colella problem. 
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Figure 12:  Upwind solutions of the Woodward-Colella problem.
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Figure 13:  Waves in a shock-tube with closed ends.
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Figure 14:  The CE/SE solution and the exact solution of the waves
in a shock-tube with closed ends problem (t = 0.09).
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Figure 15:  The CE/SE solution and the exact solution of the waves in a 
shock-tube with closed ends problem (t = 0.3).
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Figure 16:  The CE/SE solution and the exact solution of the waves in a
shock-tube with closed ends problem (t = 0.4).
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Figure 17:  The CE/SE solution and the exact solution of the waves in a
shock-tube with closed ends problem (t = 0.585).
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Figure 18:  Pressure contours and pressure coefficient at y = 0.5 of the 
oblique shock problem (60x20 mesh).

Figure 19:  Pressure contours and pressure coefficient at y = 0.5 of the 
oblique shock problem (120x40 mesh).
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Figure 20:  Geometry and Grid distribution of the 2D supersonic flow past a 
step problem.

Figure 21:  Density contours of the 2D supersonic flow past a step problem
generated using 60x20, 120x40, and 240x80 meshes.
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Figure 22:  The initial conditions and geometry (cross section) of a cylindrical shock tube 
for the blast wave problem.

Figure 23:  The computational domain and mesh-point distribution of the blast wave
problem (planar-flow version).
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Figure 24:  Pressure contours of the blast wave problem at eight different time levels.
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Figure 25:  Density contours of the blast wave problem at eight different time levels.
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Figure 26:  The computational domain and density contours at three different
time levels of the diffraction of shock wave down a step problem (first case).
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Figure 27:  Experimental results of the diffraction of shock wave down a
step problem (first case—three different time levels).
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Figure 28:  The computational domain and density contours at three different time
levels of the diffraction of shock wave down a step problem (second case).
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Figure 29:  Experimental results of the diffraction of shock wave down a 
step problem (second case—three different time levels).
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Figure 30:  Shock moving past a wedge with a dust layer.

Figure 31:  The computational domain of the dust layer problem.
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Figure 32:  Density contours for the dust layer problem (      = 30°) at four 
different time levels. (a) t = 0.5, (b) t = 1.75, (c) t = 3, (d) t = 4.

θw
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(c) t=3.0 
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Figure 32:  (continued)
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Figure 33:  Density contours at t = 3.8 for the dust layer problem (       = 20°).θw

Figure 34:  Density contours at t = 3.0 for the dust layer problem (       = 40°).θw
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Figure 35:  A schlieren photography for (       = 20°).θw

Figure 36:  A schlieren photography for (       = 30°).θw

Figure 37:  A schlieren photography for (       = 40°).θw
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Figure 38:  Pressure contours for implosion/explosion in a square box with
different initial shock wave configurations.
(a)  an equilateral triangle.  (b)  a square.
(c)  a regular pentagon.
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Figure 39:  Density contours for implosion/explosion in a square box with
different initial shock wave configurations.
(a)  an equilateral triangle.  (b)  a square.
(c)  a regular pentagon.
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Figure 40:  Pressure contours for implosion/explosion of a hexagonal shock in a 
square box.



NASA/TM—1998-208844 54

Figure 41:  Density contours for implosion/explosion of a hexagonal shock in a 
square box.
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